Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Micromachines (Basel) ; 15(1)2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38258265

RESUMO

Free-form factor optoelectronics is becoming more important for various applications. Specifically, flexible and transparent optoelectronics offers the potential to be adopted in wearable devices in displays, solar cells, or biomedical applications. However, current transparent electrodes are limited in conductivity and flexibility. This study aims to address these challenges and explore potential solutions. For the next-generation transparent conductive electrode, Al-doped zinc oxide (AZO) and silver (AZO/Ag/AZO) deposited by in-line magnetron sputtering without thermal treatment was investigated, and this transparent electrode was used as a transparent organic light-emitting diode (OLED) anode to maximize the transparency characteristics. The experiment and simulation involved adjusting the thickness of Ag and AZO and OLED structure to enhance the transmittance and device performance. The AZO/Ag/AZO with Ag of 12 nm and AZO of 32 nm thickness achieved the results of the highest figure of merit (FOM) (Φ550 = 4.65 mΩ-1) and lowest roughness. The full structure of transparent OLED (TrOLED) with AZO/Ag/AZO anode and Mg:Ag cathode reached 64.84% transmittance at 550 nm, and 300 cd/m2 at about 4 V. The results demonstrate the feasibility of adopting flexible substrates, such as PET, without the need for thermal treatment. This research provides valuable insights into the development of transparent and flexible electronic devices.

2.
ACS Appl Mater Interfaces ; 15(46): 53671-53677, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37947841

RESUMO

In this paper, we demonstrate low-thermal-budget ferroelectric field-effect transistors (FeFETs) based on the two-dimensional ferroelectric CuInP2S6 (CIPS) and oxide semiconductor InZnO (IZO). The CIPS/IZO FeFETs exhibit nonvolatile memory windows of ∼1 V, low off-state drain currents, and high carrier mobilities. The ferroelectric CIPS layer serves a dual purpose by providing electrostatic doping in IZO and acting as a passivation layer for the IZO channel. We also investigate the CIPS/IZO FeFETs as artificial synaptic devices for neural networks. The CIPS/IZO synapse demonstrates a sizable dynamic ratio (125) and maintains stable multilevel states. Neural networks based on CIPS/IZO FeFETs achieve an accuracy rate of over 80% in recognizing MNIST handwritten digits. These ferroelectric transistors can be vertically stacked on silicon complementary metal-oxide semiconductor (CMOS) with a low thermal budget, offering broad applications in CMOS+X technologies and energy-efficient 3D neural networks.

3.
Sci Adv ; 9(38): eadh9889, 2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37738348

RESUMO

A neuromuscular junction (NMJ) is a particularized synapse that activates muscle fibers for macro-motions, requiring more energy than computation. Emulating the NMJ is thus challenging owing to the need for both synaptic plasticity and high driving power to trigger motions. Here, we present an artificial NMJ using CuInP2S6 (CIPS) as a gate dielectric integrated with an AlGaN/GaN-based high-electron mobility transistor (HEMT). The ferroelectricity of the CIPS is coupled with the two-dimensional electron gas channel in the HEMT, providing a wide programmable current range of 6 picoampere per millimeter to 5 milliampere per millimeter. The large output current window of the CIPS/GaN ferroelectric HEMT (FeHEMT) allows for amplifier-less actuation, emulating the biological NMJ functions of actuation and synaptic plasticity. We also demonstrate the emulation of biological oculomotor dynamics, including in situ object tracking and enhanced stimulus responses, using the fabricated artificial NMJ. We believe that the CIPS/GaN FeHEMT offers a promising pathway for bioinspired robotics and neuromorphic vision.

4.
ACS Nano ; 17(8): 7695-7704, 2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37014204

RESUMO

Significant effort for demonstrating a gallium nitride (GaN)-based ferroelectric metal-oxide-semiconductor (MOS)-high-electron-mobility transistor (HEMT) for reconfigurable operation via simple pulse operation has been hindered by the lack of suitable materials, gate structures, and intrinsic depolarization effects. In this study, we have demonstrated artificial synapses using a GaN-based MOS-HEMT integrated with an α-In2Se3 ferroelectric semiconductor. The van der Waals heterostructure of GaN/α-In2Se3 provides a potential to achieve high-frequency operation driven by a ferroelectrically coupled two-dimensional electron gas (2DEG). Moreover, the semiconducting α-In2Se3 features a steep subthreshold slope with a high ON/OFF ratio (∼1010). The self-aligned α-In2Se3 layer with the gate electrode suppresses the in-plane polarization while promoting the out-of-plane (OOP) polarization of α-In2Se3, resulting in a steep subthreshold slope (10 mV/dec) and creating a large hysteresis (2 V). Furthermore, based on the short-term plasticity (STP) characteristics of the fabricated ferroelectric HEMT, we demonstrated reservoir computing (RC) for image classification. We believe that the ferroelectric GaN/α-In2Se3 HEMT can provide a viable pathway toward ultrafast neuromorphic computing.

5.
Nat Commun ; 13(1): 5223, 2022 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-36064944

RESUMO

As machine vision technology generates large amounts of data from sensors, it requires efficient computational systems for visual cognitive processing. Recently, in-sensor computing systems have emerged as a potential solution for reducing unnecessary data transfer and realizing fast and energy-efficient visual cognitive processing. However, they still lack the capability to process stored images directly within the sensor. Here, we demonstrate a heterogeneously integrated 1-photodiode and 1 memristor (1P-1R) crossbar for in-sensor visual cognitive processing, emulating a mammalian image encoding process to extract features from the input images. Unlike other neuromorphic vision processes, the trained weight values are applied as an input voltage to the image-saved crossbar array instead of storing the weight value in the memristors, realizing the in-sensor computing paradigm. We believe the heterogeneously integrated in-sensor computing platform provides an advanced architecture for real-time and data-intensive machine-vision applications via bio-stimulus domain reduction.


Assuntos
Neurônios , Visão Ocular , Animais , Cognição , Mamíferos , Neurônios/fisiologia , Percepção Visual
6.
Sci Adv ; 7(51): eabj2521, 2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-34910523

RESUMO

Multispectral photodetectors are emerging devices capable of detecting photons in multiple wavelength ranges, such as visible (VIS), near infrared (NIR), etc. Image data acquired with these photodetectors can be used for effective object identification and navigations owing to additional information beyond human vision, including thermal image and night vision. However, these capabilities are hindered by the structural complexity arising from the integration of multiple heterojunctions and selective absorbers. In this paper, we demonstrate a Ge/MoS2 van der Waals heterojunction photodetector for VIS- and IR-selective detection capability under near-photovoltaic and photoconductive modes. The simplified single-polarity bias operation using single pixel could considerably reduce structural complexity and minimize peripheral circuitry for multispectral selective detection. The proposed multispectral photodetector provides a potential pathway for the integration of VIS/NIR vision for application in self-driving, surveillance, computer vision, and biomedical imaging.

7.
Sci Rep ; 10(1): 2764, 2020 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-32066791

RESUMO

The time-of-flight (ToF) principle is a method used to measure distance and construct three-dimensional (3D) images by detecting the time or the phase difference between emitted and back-reflected optical flux. The ToF principle has been employed for various applications including light ranging and detection (LiDAR), machine vision and biomedical engineering; however, bulky system size and slow switching speed have hindered the widespread application of ToF technology. To alleviate these issues, a demonstration of hetero-integration of GaN-based high electron mobility transistors (HEMTs) and GaAs-based vertical cavity surface emitting lasers (VCSELs) on a single platform via a cold-welding method was performed. The hetero-integrated ToF sensors show superior switching performance when compared to silicon-transistor-based systems, miniaturizing size and exhibiting stable ranging and high-resolution depth-imaging. This hetero-integrated system of dissimilar material-based high-performance devices suggests a new pathway towards enabling high-resolution 3D imaging and inspires broader range application of heterogeneously integrated electronics and optoelectronics.

8.
Bioprocess Biosyst Eng ; 43(5): 863-875, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31980903

RESUMO

O-Glycosylation occurs in recombinant proteins produced by CHO cells, but this phenomenon has not been studied extensively. Here, we report that rituximab is an O-linked N-acetyl-glucosaminylated (O-GlcNAcylated) protein and the production of rituximab is increased by thiamet G, an inhibitor of O-GlcNAcase. The production of rituximab doubled with OGA inhibition and decreased with O-GlcNAc transferase inhibition. O-GlcNAc-specific antibody and metabolic labelling with azidO-GlcNAc confirmed the increased O-GlcNAcylation with thiamet G. Protein mass analysis revealed that serine 7, 12, and 14 of the rituximab light chain were O-GlcNAcylated. S12A mutation of the light chain decreased rituximab stability and failed to increase the production with thiamet G without any significant changes of mRNA level. Cytotoxicity and thermal stability assays confirmed that there were no differences in the biological and physical properties of rituximab produced by thiamet G treatment. Therefore, thiamet G treatment improves the production of rituximab without significantly altering its function.


Assuntos
Mutação de Sentido Incorreto , N-Acetilglucosaminiltransferases/antagonistas & inibidores , Piranos/farmacologia , Rituximab , Tiazóis/farmacologia , Substituição de Aminoácidos , Animais , Células CHO , Cricetulus , Glicosilação/efeitos dos fármacos , Humanos , N-Acetilglucosaminiltransferases/metabolismo , Rituximab/biossíntese , Rituximab/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...